Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.25.313510

ABSTRACT

Three lethal lower respiratory tract coronavirus epidemics have occurred over the past 20 years. This coincided with major developments in genome-wide gene and protein expression analysis, resulting in a wealth of datasets in the public domain. Seven such in vitro studies were selected for comparative bioinformatic analysis through the VirOmics Playground, a user-friendly visualisation and exploration platform we recently developed. Despite the heterogeneous nature of the data sets, several commonalities could be observed across studies and species. Differences, on the other hand, reflected not only variations between species, but also other experimental variables, such as cell lines used for the experiments, infection protocols and potential discrepancies between transcriptome and proteome data. The results presented here are available online and can be replicated through the VirOmics Playground.


Subject(s)
COVID-19
2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.24.312165

ABSTRACT

Pathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Two compounds, nitazoxanide and JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 4.90 M and 0.69 M, respectively, with specificity indices of greater than 150. Both inhibitors had in vitro antiviral activity in multiple cell types against some DNA and RNA viruses, including porcine transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved body weight gain and survival. These results highlight the potential utility of nitazoxanide and JIB-04 as antiviral agents against SARS-CoV-2 and other viral pathogens.


Subject(s)
Coronavirus Infections , Gastroenteritis , Severe Acute Respiratory Syndrome , Tumor Virus Infections
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.06.08.141077

ABSTRACT

Cholesterol 25-hydroxylase (CH25H) is an interferon-stimulated gene (ISG) that shows broad antiviral activities against a wide range of enveloped viruses. Here, using an ISG screen against VSV-SARS-CoV and VSV-SARS-CoV-2 chimeric viruses, we identified CH25H and its enzymatic product 25-hydroxycholesterol (25HC) as potent inhibitors of virus replication. Mechanistically, internalized 25HC accumulates in the late endosomes and blocks cholesterol export, thereby restricting SARS-CoV-2 spike protein catalyzed membrane fusion. Our results highlight a unique antiviral mechanism of 25HC and provide the molecular basis for its possible therapeutic development.

4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.04.21.054015

ABSTRACT

Both gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA have been frequently observed in COVID-19 patients. However, whether SARS-CoV-2 replicate in the human intestine and its clinical relevance to potential fecal-oral transmission remain unclear. Here, we demonstrate productive infection of SARS-CoV-2 in ACE2+ mature enterocytes in human small intestinal enteroids. In addition to TMPRSS2, another mucosa-specific serine protease, TMPRSS4, also enhanced SARS-CoV-2 spike fusogenic activity and mediated viral entry into host cells. However, newly synthesized viruses released into the intestinal lumen were rapidly inactivated by human colonic fluids and no infectious virus was recovered from the stool specimens of COVID-19 patients. Our results highlight the intestine as a potential site of SARS-CoV-2 replication, which may contribute to local and systemic illness and overall disease progression.


Subject(s)
Mastocytosis, Systemic , Signs and Symptoms, Digestive , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL